LETTERS 2001 Vol. 3, No. 7 983-985

ORGANIC

Highly Diastereoselective Michael Addition of α-Hydroxy Acid Derivatives and Enantioselective Synthesis of (+)-Crobarbatic Acid

Der-Pin Jang, Jia-Wen Chang, and Biing-Jiun Uang*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

bjuang@mx.nthu.edu.tw

Received December 1, 2000

ABSTRACT

Michael addition of enolates of 2a and 2b to α , β -unsaturated esters took place selectively on different faces (*Si* and *Re*, respectively) of the double bond to give the corresponding products 4 and 5, respectively, with >98% de. Subsequent hydrolysis of these Michael adducts gives 3,4-disubstituted γ -lactones with high enantiomeric excesses.

The Michael addition reaction is one of the most important processes for C–C bond formation in organic synthesis.¹ A number of methods for asymmetric Michael addition were developed in the 1980s.² In previous reports, diastereoselective Michael addition reactions using α -amino acid derivatives as Michael donors have been examined as a

(2) (a) Viteva, L. Z.; Gospodovva, T. S.; Stefanovsky, Y. N. *Tetnehedron* **1994**, *50*, 7193. (b) Yamamoto, H.; Kanemasa, S.; Wada, E. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2739. (c) Enders, D.; Papadopoulos, K.; Rendenbach, B. E. M.; Appel, R.; Knoch, F. *Tetrahedron Lett.* **1986**, *27*, 3491. (d) Schollkopf, U.; Pettig, D.; Schulze, E.; Klinge, M.; Egert, E.; Benecke, B.; Noltemeyer, M. *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1194. (e) Nakamura, S.; Watanabe, Y.; Toru, T. *J. Org. Chem.* **2000**, *65*, 1758.

10.1021/ol0069507 CCC: \$20.00 © 2001 American Chemical Society Published on Web 03/07/2001

method for introducing an α -substituent.³ Stereoselective synthesis of an α -substituted α -hydroxy acid has been explored.⁴ However, application of the Michael addition reaction with respect to the newly formed bond on the α -hydroxy acid derivative is quite rare⁵ and has not been probed thoroughly. Recently, we have shown that chiral dioxolanones **2a** and **2b**, derived from **1**, could be used for the preparation of enantiopure α -substituted α -hydroxy acids.⁶ As a result, we decided to explore the diastereo-

^{(1) (}a) Tomioka, K.; Koga, K. In Noncatalytic Additions to α,β -Unsaturated Carbonyl Compounds. In Asymmetric Synthesis, Vol. 2; Morrison, J. D., Ed.; Academic Press: New York, 1983; Chapter 7. (b) Posner, G. H. Organometallic Addition Reactions to Enatiomerically Pure Vinylic Sulfoxides. In Asymmetric Synthesis, Vol. 2; Morrison, J. D., Ed.; Academic Press: New York, 1983; Chapter 8. (c) Corey, E. J.; Peterson, R. T. Tetrahedron Lett. **1985**, 26, 5025. (d) Nomura, M.; Kanemasa, S. Tetrahedron Lett. **1994**, 35, 143. (e) Mulzer, J.; Chucholowski, A.; Lammer, O.; Jibril, I.; Huttner, G. J. Chem. Soc., Chem. Commun. **1983**, 869. (f) Blarer, S. J.; Schweizer, W. B.; Seebach, D. Helv. Chim. Acta **1982**, 65, 1637. (g) Hartwig, W.; Born, L. J. Org. Chem. **1987**, 52, 4352.

^{(3) (}a) Suzuki, K.; Seebach, D. *Liebigs Ann. Chem.* **1992**, 51. (b) Kanemasa, S.; Uchida, O.; Wada, E. *J. Org. Chem.* **1990**, 55, 4411. (c) Kanemasa, S.; Tatsukawa, A.; Wada, E. *J. Org. Chem.* **1991**, 56, 2875. (d) Achqar, A. E.; Boumzebra, M.; Roumestant, M.-L.; Viallefont, P. *Tetrahedron* **1988**, *44*, 5319.

^{(4) (}a) Scott, J. W. In *Asymmetric Synthesis*; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1984; Vol. 4. (b) Seeback, D. In *Modern Synthetic Methods*; Scheffold, R., Ed.; Otto Salle Verlag: Frankfurt, 1980. (c) Coppola, G. M.; Schuster, H. F. In α -*Hydroxy Acids In Enantioselective Synthesis*; Academic Press: Weinheim, 1997.

^{(5) (}a) Calderari, G.; Seebach, D. *Helv. Chim. Acta* **1985**, *68*, 1592. (b) Aitken, R. A.; Thomas, A. W. *Synlett* **1998**, 102. (c) Hattori, K.; Yamamoto, H. *J. Org. Chem.* **1993**, *58*, 5301.

selective Michael addition of enolates derived from **2a** and **2b** to α,β -unsaturated esters. The results are reported herein. A concise and highly enantioselective synthesis of (+)-crobarbatic acid employing this methodology is also described.

At the outset, we investigated the diastereoselectivity of the addition of enolate derived from **2a** to methyl crotonate (eq 1). Treatment of **2a** with lithium diisopropylamide (LDA)

in tetrahydrofuran (THF) at -100 °C followed by addition of methyl crotonate in 3 h at -78 °C gave compound **3** in 92% yield as the sole product, as judged by 400 MHz ¹H NMR measurement of the crude mixture (Table 1, entry 1).

 Table 1. Diastereoselective Michael Addition of 2a with

 Methyl Crotonate

entry	additive	<i>T</i> (h)	yield (%)	de (%) ^a
1		3	92	>98
2	HMPA (2 equiv)	3	86	>98
3	HMPA (6 equiv) ^b	3	84	>98
4	12-crown-4 ether (2 equiv)	2.5	88	>98
5	ZnCl ₂ (1.5 equiv)	2.5	89	>98
6	SnCl ₂ (1.5 equiv)	2.5	86	>98

 a No second isomer has been detected by 400 MHz $^1\mathrm{H}$ NMR spectroscopy on the crude mixture. b See ref 8.

The stereochemistry of Michael adduct **3** was confirmed by X-ray crystallographic analysis. The excellent facial selectivity of the enolate of **2** is exemplified again.⁶ To expand the scope of this diastereoselective Michael addition, we investigated the possibility of stereoselective variants at C_1' of Michael adduct **3**. When the reaction was conducted in a similar manner with the addition of additive prior to enolate formation⁷ (Table 1, entries 2–6), Michael adduct **3** was

obtained as the sole product in a slightly lower yield. Thus, it is reasonable to assume that the Michael addition of the enolate of 2a to methyl crotonate did not proceed through a chelated transition structure in all cases.⁹

On the basis of the above preliminary survey, several (*E*)monosubstituted α , β -unsaturated esters were treated with the lithium enolates derived from **2a** or **2b** in THF at -100 °C without additives (eq 2). After 3 h at -78 °C, the corre-

sponding products were obtained with very high diastereoselectivities and yields (Table 2). The stereochemistry of

Table 2.	Diastereoselective	Michael	Addition	of 2a	and	2b
with α,β -U	Jnsaturated Esters					

entry	\mathbb{R}^1	R ²	product	yield (%)	4 :5 ^{<i>a</i>}
1	Me	Н	а	88	
2	Me	Ph	Ь	78	>99:1
3	Me	Pr	С	88	>99:1
4	Me	<i>i</i> Pr	d	84	>99:1
5	Н	Н	е	76	
6	Н	Me	f	82	<1:99
7	Н	Ph	g	77	<1:99

 a No second isomer has been detected by 400 MHz $^1\mathrm{H}$ NMR spectroscopy on the crude mixture.

Michael adducts was confirmed by X-ray crystallographic analysis for **3** and **5g**¹⁰ and nuclear Overhauser effect experiments.¹¹ Interestingly, the enolate of **2a** gave Michael adduct **4**, whereas the enolate of **2b** gave Michael adduct **5**. It is not clear if Michael addition of the enolates of **2a** and **2b** to the α , β -unsaturated esters took place on different faces (*Si* and *Re*, respectively) of the double bond. The reason is currently under investigation.

⁽⁶⁾ Chang, J.-W.; Jang, D.-P.; Uang, B.-J.; Liao, F.-L.; Wang, S.-L. Org. Lett. 1999, 1, 2061.

⁽⁷⁾ It has been found that the *E* lithium enolate of ethyl propionate reacted with ethyl (*E*)-crotonate gave *anti* and *syn* 1,4-adducts in a ratio of 71:29. The stereoselectivity was increased to 10:1 if HMPA was added after enolate formation and further increased to >20:1 if HMPA was added prior to enolate formation. See: Yamaguchi, M.; Tsukamoto, M.; Tanaka, S.; Hirao, I. *Tetrahedron Lett.* **1984**, *25*, 5661.

⁽⁸⁾ Yen, K.-F.; Uang, B.-J. *Tetrahedron: Asymmetry* **1992**, *3*, 697. (9) It has been suggested that HMPA (in THF, a polar aprotic solvent) does not disrupt enolate tetramers. See: (a) Amstutz, R.; Schweizer, W. B.; Seebach, D.; Dunitz, J. D. *Helv. Chim. Acta* **1981**, *64*, 2617. (b) Seebach, D.; Amstutz, R.; Dunitz, J. D. *Helv. Chim. Acta* **1981**, *64*, 2622.

⁽¹⁰⁾ Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-149424 for **3**, CCDC-149423 for **5g**, and CCDC-149425 for (+)-**8**. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax (+44) 1223-336-033; e-mail deposit@ ccdc.cam.ac.uk).

⁽¹¹⁾ Further evidence for other Michael adducts without X-ray crystallographic analysis were confirmed by NOE experiments of the corresponding products after hydrolysis and lactonization [eqs 3 and 4]. For details, see Supporting Information.

To extend this methodology further, the synthesis of *trans*-crobarbatic acid 8^{12} is explored. *trans*-Crobarbatic acid 8 is the hydrolysis product of crobarbatine **6** and represents the cyclic form of necic acid **7**. Crobarbatic acid has been shown

to bear two *trans* methyl groups. However, its absolute configuration is still unknown.¹³ Our synthesis commenced with the removal of chiral auxiliary by heating **3** with 2 N sodium hydroxide in methanol (Scheme 1). The resulting

solution was acidified to give a mixture of α -hydroxy glutaric acid **9** and γ -lactone **8**, (+)-crobarbatic acid,¹⁴ and chiral auxiliary was recovered in 94% yield. The mixture was completely converted to (+)-**8** in CH₂Cl₂ utilizing *p*toluenesulfonic acid as catalyst^{12a,15} in 86% yield from **3**. The structure of (+)-8 was unambiguously determined by X-ray crystallographic analysis.¹⁰ Similarly, *trans*-3,4-disubstituted γ -lactones **10a**-**c** were synthesized in high yield and enantiopurity (eq 3). To avoid epimerization of the tertiary

 α -carbon, hydrolysis and lactonization of **5f** were achieved by heating with anhydrous hydrochloride in methanol to give lactone **11** (eq 4).¹⁶

In conclusion, the lithium enolates of α -hydroxy acid derivatives **2a** and **2b** underwent diastereospecific Michael addition. It also provided a concise synthetic route to (+)-crobarbatic acid **8** and enantiopure *trans*-3,4-disubstituted γ -lactones.

Acknowledgment. This work was supported by the National Science Council of the Republic of China. We thank G.-H. Lee and F.-L. Liao for X-ray crystallographic analysis.

Note Added after ASAP: A spelling error in the title of this Letter and two symbol errors in ref 1a were present in the version posted ASAP on 3/7/01. These errors were corrected in the version posted 3/29/01.

Supporting Information Available: The detailed experimental procedures and characterization data for new compounds; NOE spectral data for **10a**–**c** and **11**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0069507

⁽¹²⁾ For previous syntheses, see: (a) Huang, J.; Meinwald, J. J. Am. Chem. Soc. 1981, 103, 861. (b) Donohoe, T. J.; Stevenson, C. A.; Helliwell, M.; Irshad, R.; Ladduwahetty, T. Tetrahedron: Asymmetry 1999, 10, 1315.
(c) Chen, M.-Y.; Fang, J.-M. J. Org. Chem. 1992, 57, 2937. (d) Honda, T.; Ishikawa, F.; Yamane, S.-I. J. Chem. Soc., Perkin Trans. I 1996, 1125.
(13) Puri, S. C.; Sawhney, R. S.; Atal, C. K. Experientia 1973, 29, 390.

^{(14) (+)-}**8**: $[\alpha]^{25}_{D}$ +3.56 (c 1.4, H₂O). Lit.^{12b} (-)-**8**, $[\alpha]_{D}$ -3.7 (c 1.4, H₂O) and $[\alpha]^{18}_{D}$ -8.0 (c 0.2, H₂O).

⁽¹⁵⁾ Yamamoto, Y.; Yatagai, H.; Ishihara, Y.; Maeda, N.; Maruyama, K. *Tetrahedron* **1984**, *40*, 2239.

⁽¹⁶⁾ Frenette, R.; Monette, M.; Bernstein, M. A.; Young, R. N.; Verhoeven, T. R. J. Org. Chem. **1991**, 56, 3083.